If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+27x-12=0
a = 4.9; b = 27; c = -12;
Δ = b2-4ac
Δ = 272-4·4.9·(-12)
Δ = 964.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-\sqrt{964.2}}{2*4.9}=\frac{-27-\sqrt{964.2}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+\sqrt{964.2}}{2*4.9}=\frac{-27+\sqrt{964.2}}{9.8} $
| x/2+12=35 | | -63=3(x-3)+6x | | -94=-4n-5(-2n+2) | | 25/x+30=175 | | 3(5x4)=87 | | 5x-10=4x+15 | | A+5(b+2)=20 | | 5(-6+x)-5(x-8)=15 | | 206=4v+7(8+3v) | | 206=4v+7(8+3v | | 2x2=5 | | 15+8v=-7-(v+5) | | 114=-6b+6(-4b-6) | | 100+x/45=437.50 | | -6(6x-7)-2x=-262 | | 1200+400*1200=y | | A=(n+7)÷(n+2) | | y=1200+400(30) | | (X+7)+x=69 | | 30=1200+400x | | |5x-15|=5 | | 6x-8=3-5 | | 7x+50=17x | | -4+144(x-1)^2=0 | | -5=b-(-13) | | 7x+50=50x | | -4x-1=1x-4 | | 144(x-1)^2=4 | | 315x+223x=72x | | 3(-5p+6)-6=87 | | 9+2x=1-2x | | x-3÷4=12 |